Skip to content
The Kids Research Institute Australia logo
Donate

Search

Research

OmicsVolcano: software for intuitive visualization and interactive exploration of high-throughput biological data

Advances in omics technologies have generated exponentially larger volumes of biological data; however, their analyses and interpretation are limited to computationally proficient scientists. We created OmicsVolcano, an interactive open-source software tool to enable visualization and exploration of high-throughput biological data, while highlighting features of interest using a volcano plot interface. In contrast to existing tools, our software and user-interface design allow it to be used without requiring any programming skills to generate high-quality and presentation-ready images.

Research

Developing new models of mitochondrial diseases using CRISPR/Cas technologies

Aleksandra Filipovska BSc PhD Louis Landau Chair in Child Health Research; NHMRC Leadership Fellow; Deputy Director, ARC Centre of Excellence for

Research

Estimating the potential malaria morbidity and mortality avertable by the US President's Malaria Initiative in 2025: a geospatial modelling analysis

Since its inception in 2005, the US President's Malaria Initiative (PMI) has played a major role in the reductions in malaria morbidity and mortality observed across Africa. With the status of PMI funding and operations currently uncertain, we aimed to quantify the impact that a fully functioning PMI would have on malaria cases and deaths in Africa during 2025. 

Research

Quantitative subcellular reconstruction reveals a lipid mediated inter-organelle biogenesis network

The structures and functions of organelles in cells depend on each other but have not been systematically explored. We established stable knockout cell lines of peroxisomal, Golgi and endoplasmic reticulum genes identified in a whole-genome CRISPR knockout screen for inducers of mitochondrial biogenesis stress, showing that defects in peroxisome, Golgi and endoplasmic reticulum metabolism disrupt mitochondrial structure and function. 

Research

Gene editing and cardiac disease modelling for the interpretation of genetic variants of uncertain significance in congenital heart disease

Genomic sequencing in congenital heart disease (CHD) patients often discovers novel genetic variants, which are classified as variants of uncertain significance (VUS). Functional analysis of each VUS is required in specialised laboratories, to determine whether the VUS is disease causative or not, leading to lengthy diagnostic delays.

Research

Digital RNase Footprinting of RNA-Protein Complexes and Ribosomes in Mitochondria

RNA-binding proteins and mitochondrial ribosomes have been found to be linchpins of mitochondrial gene expression in health and disease. The expanding repertoire of proteins that bind and regulate the mitochondrial transcriptome has necessitated the development of new tools and methods to examine their molecular functions.

Research

ANGEL2 phosphatase activity is required for non-canonical mitochondrial RNA processing

Canonical RNA processing in mammalian mitochondria is defined by tRNAs acting as recognition sites for nucleases to release flanking transcripts. The relevant factors, their structures, and mechanism are well described, but not all mitochondrial transcripts are punctuated by tRNAs, and their mode of processing has remained unsolved.

Research

Hyperactive Nickase Activity Improves Adenine Base Editing

Base editing technologies enable programmable single-nucleotide changes in target DNA without double-stranded DNA breaks. Adenine base editors (ABEs) allow precise conversion of adenine to guanine. However, limited availability of optimized deaminases as well as their variable efficiencies across different target sequences can limit the ability of ABEs to achieve effective adenine editing.

Research

ATFS-1 counteracts mitochondrial DNA damage by promoting repair over transcription

The ability to balance conflicting functional demands is critical for ensuring organismal survival. The transcription and repair of the mitochondrial genome requires separate enzymatic activities that can sterically compete, suggesting a life-long trade-off between these two processes.

Research

Temporal landscape of mitochondrial proteostasis governed by the UPRmt

Breakdown of mitochondrial proteostasis activates quality control pathways including the mitochondrial unfolded protein response (UPRmt) and PINK1/Parkin mitophagy. However, beyond the up-regulation of chaperones and proteases, we have a limited understanding of how the UPRmt remodels and restores damaged mitochondrial proteomes.